Infrastructure in Real Quadratic Function Fields Infrastructure in Real Quadratic Function Fields

نویسنده

  • Andreas Stein
چکیده

The principal topic of this article is to extend Shanks' infrastructure ideas in real quadratic number elds to the case of real quadratic congruence function elds. In this view, this paper is intended as a \low-brow" approach to the theory of ideals and operations in the ideal class group. We summarize some basic properties of ideals and provide elementary proofs of the main results. For the purpose of this paper, only an elementary knowledge of the subject is needed, and we mainly follow the introductory notes of Artin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Explicit Infrastructure for Real Quadratic Function Fields and Real Hyperelliptic Curves

In 1989, Koblitz first proposed the Jacobian of a an imaginary hyperelliptic curve for use in public-key cryptographic protocols. This concept is a generalization of elliptic curve cryptography. It can be used with the same assumed key-per-bit strength for small genus. More recently, real hyperelliptic curves of small genus have been introduced as another source for cryptographic protocols. The...

متن کامل

The parallelized Pollard kangaroo method in real quadratic function fields

We show how to use the parallelized kangaroo method for computing invariants in real quadratic function fields. Specifically, we show how to apply the kangaroo method to the infrastructure in these fields. We also show how to speed up the computation by using heuristics on the distribution of the divisor class number, and by using the relatively inexpensive baby steps in the real quadratic mode...

متن کامل

Continued Fractions and Class Number Two

We use the theory of continued fractions in conjunction with ideal theory (often called the infrastructure) in real quadratic fields to give new class number 2 criteria and link this to a canonical norm-induced quadratic polynomial. By doing so, this provides a real quadratic field analogue of the well-known result by Hendy (1974) for complex quadratic fields. We illustrate with several example...

متن کامل

On the real quadratic fields with certain continued fraction expansions and fundamental units

The purpose of this paper is to investigate the real quadratic number fields $Q(sqrt{d})$ which contain the specific form of the continued fractions expansions of integral basis element  where $dequiv 2,3( mod  4)$ is a square free positive integer. Besides, the present paper deals with determining the fundamental unit$$epsilon _{d}=left(t_d+u_dsqrt{d}right) 2left.right > 1$$and  $n_d$ and $m_d...

متن کامل

Equivalences between Elliptic Curves and Real Quadratic Congruence Function Fields

In 1994, the well-known Diie-Hellman key exchange protocol was for the rst time implemented in a non-group based setting. Here, the underlying key space was the set of reduced principal ideals of a real quadratic number eld. This set does not possess a group structure, but instead exhibits a so-called infrastructure. More recently, the scheme was extended to real quadratic congruence function e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999